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TURBULENT FLOW AND PRESSURE LOSSES 
BEHIND OBLIQUE HIGH-DRAG HEAT EXCHANGERS 
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Abstract-A theoretical study is made of the flow downstream of very high-drag porous plates aligned 
obliquely to the ultimate flow direction, representing common oblique heat-exchanger arrangements in 
dry cooling towers, for example. 

Following a brief discussion of the flow between parallel porous plates, the flow in a V-shaped region 
formed by porous plates is analyzed. It is argued that eddy viscosity increases linearly with distance from 
the apex, permitting a self-similar solution. Pressure becomes infinite in the apex, and a concentrated jet 
appears on the centerline; turbulence acts near the centerline to limit the jet velocity there. 

Downstream of the V-opening, a narrowing of the flow occurs as it becomes parallel to the centerline, 
and finally, the velocity profile is fully diffused by turbulence. The velocity profiles, streamline patterns, 
pressures, and total head losses are fully described for this sequence of flow processes. It is shown that 

total-head losses can be eliminated by introducing a uniform cascade of airfoils just behind the plates. 

NOMENCLATURE 

maximum value of u/W at centerline ; 
parameter defining streamwise pressure 

gradient, equation (16); 
function of $, defining vorticity, equation 

(31); 
velocity profile function, equation (14) ; 
characteristic length for turbulence 

production; 
static pressure; 
transverse difference of pressure, from 

centerline to plate surface; 
turbulent Reynolds number, equation (24); 
radial coordinate; 
ultimate leaving velocity parallel to 

centerline, W/sin B0 ; 
characteristic velocity defining R,; 

velocity parallel to centerline; 

velocity in radial direction; 
velocity through porous plates; 
velocity in 0 direction; 
distance along centerline; 
distance transverse to centerline; Y = y/r,. 

Greek symbols 

6, spacing between parallel plates; 

6, assumed eddy-viscosity coefficient, 
equation (15); 

8, eddy-viscosity coefficient derived from 
solution, equation (29); 

v,vT, effective or turbulent kinematic viscosity; 

ICI* stream function, equations (4) or (30); Y 
= *jWr,; 

P? density ; 

*Present address: Research Division, Western Electric. 
Princeton, New Jersey 08540, U.S.A. 

6 angular coordinate (Fig. 3); 

% 
cl:’ 

semi-angle of V-configuration ; 
vorticity. 

Subscripts 

1, 

s, 

0, 

1, 
a, 

idea1 pressure just behind bundle, 

equation (41); 
at the downstream termination of the 

bundle (Fig. 3); 
just behind and along the bundle face 

(Fig. 3) ; 
in parallel separated flow (Fig. 3) ; 
far downstream in uniform flow. 

Subscript notation is used for partial derivatives; 
primes denote ordinary differentiation; and a bar 
over a quantity signifies an average, either over r or 

velocity. 

INTRODUCTION 

IN DRY cooling towers, heat-exchanger bundles are 
usually arranged in “delta” formations, to conserve 
space [l, 21. In some conceptions, the bundles would 
not be in a delta array, but would be set oblique to 
the air flow direction [3]. The pressure-loss coef- 
ficient based on velocity head normal to the bundle 
face is typically very large; about 80 for the 

Grootvlei natural-draft tower [4], and about 40 for 
that at Rugeley [l]. Consequently, flow features up- 
and-downstream of the bundle array tend to be 
rather independent, because the overall driving 
pressure difference tends to be larger than any 
possible pressure disturbances in the flow fields. 

Nevertheless, severe pressure losses can result from 
obliquity of the flow, posing important questions of 
design. Wind, especially, can cause the flow entering 
a bundle to have large, variable, and uncertain 
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heal exchanger separated flml rwlng 
bundle _\ reglo” - \ region - 

FIG. I. Sketch of flow through V-bundle, showing stream- 
lines and separated regions. 

obliquity relative to the heat-exchanger face. Figure 

1 is a composite sketch which illustrates expected 
flow features for a typical delta array of 60” included 

angle. Upstream, the flow may be oblique (45” to the 
axis of the heat-exchanger, in the sketch), owing 
either to design or to wind. As a result, streamlines 
will enter the bundle face at very glancing angles, 
and severe entrance losses will occur. Calculations of 
these losses are in progress. Downstream, streamlines 

will emerge from the heat-exchanger in a direction 
normal to the face, if the overall loss coefficient is 
high, and then converge into a jet-like flow pattern 
downstream, with severe separation from the down- 
stream corners. This type of flow pattern is always 
observed behind heat-exchanger deltas and in labo- 

ratory simulations [5]. If a zig-zag screen is placed 
on a water table, for example, streamline patterns of 
the sort sketched on Fig. 1 are easily visualized. 
Large mixing losses are ascribable to the distorted 
downstream velocity profile shown in the sketch. 
Although these losses may amount to a significant 
fraction of the heat-exchanger pressure drop, the 
engineer has no rational basis for their estimation. 

In this paper, an analysis of the turbulent flow 

downstream of a V-bundle will be developed, giving 
the pressure variations and streamline patterns in the 
flow, as well as an estimate of the extra loss 

coefficients attributable to the V configuration. The 
width of the separated region will be found. It will be 

shown that the loss due to an elevated pressure in 
the V-region itself and that due to the mixing process 

lmpervlous 
end plate, 

hJlday- 
layer 

separation 

far downstream are of the same order, with the latter 
usually predominant. A suggestion will be offered to 
reduce or even eliminate these effects. 

In keeping with the foregoing discussion, the 

pressure drop across the bundle will be assumed high 
enough that the emerging normal velocity is cssen- 
tially constant. 

FLOW BETWEEN PARALLEL 
POROUS PLATES 

A starting point for the present analysis is 

provided by a problem discussed in the review by 
Raithby [6]. We consider the special case of entry of 
a uniform flow normally into the region between two 

parallel porous plates (Fig. 2). This problem is of 

course not the same as that of a V-bundle, because 
the bundles do not converge to an apex. However, 
the parallel-plate problem has a certain relevance to 
heat-exchanger design, and will certainly illustrate 
the important role of pressure. Also, flow will be 
found to concentrate in the centre of the passage, a 

tendency which will prove to be especially dramatic 
in the V-bundle case. 

If the flow is purely inviscid and incompressible, a 

simple solution exists [6] for constant W, in which II 

increases linearly with X, and w is a function only of 

J’, 

12’ = - Wsin?r(J’/d); LI = $~cos71(~/d). (1) 

The maximum velocity in the middle of the gap is 
nWx/6. One should note that this flow, though 
inviscid, is not irrotational ; the vorticity is 

Static pressure falls in the flow direction at a rate 
proportional to x2 and to W’, and to the narrowness 

of the gap l/6’ ; the narrower the gap, the higher the 
pressure gradient must be, in order to turn the flow 

downstream in that constricted region. Pressure also 
varies transversely, with the highest level at the 
center. Denoting pm,, as the pressure at the center of 

the upstream face, 

i 

2 

P = Pmax -fpW2 n’s+sin’W 
1 

(3) 

/ 
“dlvldlng streoml&’ 
(pressure = p. ) 

porous pl0te-l w 1 separated 
region 

FIG. 2. Sketch of velocity profiles and separation from ends of plates. 
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We should note that there must be a boundary layer FLOW BEHIND A V-CONFIGURATION 

on the forward face, and it must separate, just as at We now return to the problem posed in Fig. 1. 

the rear of a cylinder (see Fig. 2). The resulting wake The polar coordinate system to be used appears in 
would affect the downstream flow, especially in the Fig. 3. For the moment, we imagine that the porous 
center of the gap. plates at 8 = +BO extend to r = co, and the inward 

Now, suppose that the plates are terminated at velocity W is constant along them. Thus, we assume 
some location x, bounded by a free surface (Fig. 2) that any pressure variations in the downstream flow 
and a constant-pressure separation region forms, are so much smaller than the pressure drop across 
bounded by a free surface. We then look for the the plates (heat-exchanger bundles) that they do not 
location of that surface, or “dividing streamline”, and significantly influence W. In effect, as many practical 
for the corresponding velocity profile far down- cases suggest, we assume a very large ratio of the 
stream. Along any streamline downstream of x,, bundle pressure drop to the through-flow dynamic 
vorticity will be constant. At xs, we may take the pressure. When applied to the estimation of down- 
stream function to be stream head losses, our theory should therefore 

Y’, = Wx, sin(zy/Q (4) 
represent the first term of an asymptotic series in 
that ratio. 

Comparing with equation (2), one may therefore 
write 

a, = (G?%, (5) 

and the same relationship must hold far downstream 
where the flow has become parallel. There 

ui = @l(y); RI = -u; = $;‘(y). (6) 
FIG. 3. Sketch of coordinate system and flow processes. 

Substituting into equation (5) (with subscripts s Flow becomes parallel between @ and 0, and fully diffused 

replaced by subscripts l), 
and mixed between 0 and 0. 

11/;‘+ (7#$, = 0. (7) We may write the equations of viscous motion as 

The solution for which pressure and hence velocity 
follows, with v representing a kinematic viscosity, for 

are constant along the dividing streamline is 
the time being: 

$I = Wx,Jw sin @y/S) ; 
(ru), + w,, = 0 (10) 

UI = W(7rxJ6) J~cos(xy/S). 
(8) W wz 1 

VU, +; V,) - 7 + - p, 
P 

In particular, far downstream where I,!J~ = Wx, and y 
= l/2(6,) (see equation (4) and Fig. 2), one must 
have u1 = W, the resultant velocity at the plate. Also, 
one finds 

(11) 

6, 1P 
;5- = (2/n) tan-’ (nx,/6). (9) vw,+Ww,,+~+-’ 

r r Pr 

From the foregoing results, we may infer that the I 4w,,,, %I 700 

final width of the flow depends on the length-to- 
=v w,,+=+II+r+g . (12) 

r r2 1 

height ratio of the gap, as does the pressure drop 
from p0 to the final pressure p,. In fact, p0 -pS 

The required boundary conditions are 

= ;P W2[ 1 + (nx,/S)z]. w(r, +Bo) = F W; v(r, &Q,) = 0. (13) 

With heat-exchanger applications in view, the 
most impressive aspect of these results is the very 

It is natural to try to find a solution in the self- 
similar form 

high pressure drop compared with dynamic pressure 
of the entering flow, when the heat-exchanger u = Wf’(@; w = - Wf(Q), (14) 

bundles are separated by a distance comparable to 
or less than their length. For example, if S/x, = 0.6, 

which would of course satisfy equation (10) identi- 

then (P,,, - p,,)/(iPW’) = 28.4. Also, in that case, 
cally. For equation (14) to represent a solution of 

(u,),,,/W = 5.2, and the final parallel flow has a 
equations (11) and (12), it is clear that rpI must be 

width of 6,/S = 0.88. These flow features (high back- 
constant and v must be proportional to r. That is, 

pressure, and downstream separation) must typically v = EWr, (15) 

occur when high-resistance bundles are placed 
oblique to the intended downstream flow direction. 

where E is a physical parameter, and 

In particular, we may expect such effects for the V- 1 
-:rp,= bW2, (16) 

bundle arrangement of Fig. 1. P 
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Table 1. Results for V-configuration. Boxes enclose solutions consistent with equation (29); that is, c = C 

h i: 00 
AP 

i 
YI Pi-P, P,-P, ii,.<,-P, , P,,-P,_, 

(I 
:pw2 sin 110 +plJQ $IL’z $pl’J $pL:* 

0 30.02 0 ‘CL 0.811 0.750 - 1.029 0.723 0.723 
0.001 29.98 5.;*7 0.0107 0.0133 0.81 I 0.750 - 1.017 0.729 0.676 
0.003 29.94 5.244 0.0293 0.008 1 0.811 0.751 - 1.000 0.737 0.63 1 

5.0 0.006 29.9 1 4.922 0.0547 0.0060 0.811 0.751 - 0.979 0.756 0.589 

0.01 29.88 4.670 0.0861 0.0048 0.811 0.752 -0.953 0.777 0.545 
0.03 29.90 4.076 0.2230 0.003 1 0.815 0.752 -0.851 0.883 0.407 
0.05 30.05 3.769 0.3412 0.0025 0.822 0.749 -0.769 0.990 0.326 

0 40.04 II 0 % 0.793 0.586 -0.92x 0.555 0.555 

2.5 0.0041 39.94 3.78 I 0.0270 0.0041 0.793 0.588 - 0.903 0.570 0.485 

0.03 39.89 3.094 0. I569 0.0018 0.796 0.589 - 0.806 0.662 0.344 

0 49.45 L 0 X 0.792 0.423 - 0.802 0.392 0.392 

1.4 0.0030 49.46 3.036 0.0147 0.0030 0.792 0.422 - 0.792 0.403 0.358 

0.03 49.31 2.478 0.1134 0.0011 0.797 0.425 -0.717 0.467 0.260 

where b is a constant. Thus, pressure must fall 

logarithmically with r, though we should allow for 
an additive dependence on 0. 

The need to make v proportional to r means that 
the self-similar assumption cannot deal with laminar 

viscous flow, for which v would be constant. 
However, flow behind heat-exchangers should be 
assumed turbulent anyway, and, happily, theory and 
experiment [7,8] suggest exactly such a linear 
relationship for the turbulent jets, wakes and mixing 

layers with which we would be inclined to compare 
our flow emerging from linearly diverging walls. The 
form of equation (15) may be inferred from the idea 
that turbulent eddies grow in proportion to the 

width of the flow passage. 
However, the value of E will depend on the wall 

divergence, and especially on the velocity of the “jet” 

along the centerline of Fig. 3. This jet velocity is not 
known a priori, and in fact will prove to depend on E. 

What we shall do, therefore, is first find solutions for 
a range of choices of I:, and then find which solution 
conforms suitably .to the treatment of jets and mixing 
layers provided by Tennekes and Lumley [8]. 

Proceeding in this way, we use equations (14-16) 

to transform equations (1 l-l 3), which then read: 

E(,f”‘+f’)+ ff’“+.1’2+b = 0 (17) 

fU”+f’)-p,,l(pW2) = 0 (18) 

f(+e,)= *1; f’(+o,)=o. (19) 

Clearly, f may be found from equations (17) and 
(19), with the constant b, initially unknown, con- 
stituting part of the solution. Thus, the radial 
pressure gradient will be found first, and then the 
azimuthal pressure gradient can be found directly 
from equation (18). 

An “imiscid” solution 
It is natural first to look for a solution with E = 0, 

as we did for parallel plates. In such a case p is 

purely a function of r, and equation (17) may be 
integrated once, after multiplying by ,f’/,f. The result 

is 

,f’2+~2-1+2blnf=0, (20) 

where equation (19) has been applied. The final 
integration is best done numerically. First, we notice 
that f’ becomes infinite when f vanishes, as it must 

by symmetry, along the center line 8 = 0. In other 
words, we will find a strong “jet” along the axis. 

A series of numerical solutions of equation (20) 

have been obtained [9] with various values of 6 
ranging from 0.75 to 50. For each value of b, one 
may find the value of 0 = B0 for which ,f = 1 and ,f’ 
= 0. That angle (H,) is the semi-vertex angle between 

the porous plates corresponding to the given 
pressure gradient (b), when E is zero. Table 1 and Fig. 
4 show that relationship, and the inviscid radial 
velocity (v) profiles for b = 5.0 appears, labeled E 
= 0, in Fig. 5. 

Figure 4 shows that the pressure gradient goes 
inversely with vertex angle. Physically, one may say 
that a more acute vertex angle would mean that the 
emerging flows from the two sides are more directly 
opposed, and must turn more abruptly to escape (see 
Fig. 1). The more abrupt turning must be provided 
by a stronger pressure gradient. So to speak, a very 
acute angle tends to trap the entering flow. Figure 4 
shows that h = 5 corresponds nearly to a semi-angle 
of 30”, or a heat-exchanger “delta” with a vertex 
angle of 60”. This is about the lower limit of usual 
practice. 

As we shall see, when turbulent mixing is taken 
into account, H, will depend on E, for given h; 
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Vertex Semi-angle , 8. (degr 1 

FIG. 4. Streamwise pressure gradient as a function of vertex 
angle of V-configuration, for no turbulent decay of jet (E 
= 0) and for a large decay coefficient (E = 0.03). Pressure is 
referred to fully-mixed downstream velocity U = W/sin B,,. 

“71 

Velocities, x and% 

FIG. 5. Profiles of radial (u) and azimuthal (w) velocities for 
b = 5.0 and various assumptions as to the turbulent 
coefficient E. It will prove that E = 0.006 is “correct” for b 

= 5.0. 

however, the dependence will prove to be very weak, 
and the “inviscid” relationship between&, and b will 
be found to be accurate enough for any practical 

purpose. 
The most distinctive feature of the inviscid 

solution is the concentrated jet along the plane of 
symmetry, shown on Fig. 5. In fact, radial velocity 
goes to infinity as 6 goes to zero. In a real flow, there 
are two phenomena which must actually limit the 
central flow to finite velocities: the first, which we 
will study in this paper, is turbulent mixing (finite E); 
the second is that the associated high pressure in the 

vertex will oppose the flow through any real heat- 
exchanger near the vertex, invalidating our assump- 

tion that W is constant everywhere on the surface. 
Obviously, if flow near the vertex 1s limited, the 

downstream “jet” will have finite velocity. 
Removing the constant W assumption will ge- 

nerally require consideration of finite-resistance 
bundles, and hence will also require knowledge of 
the upstream flow, and abandonment of similarity. 

These improvements are deferred for subsequent 
study, and in this paper we will adhere to the 
assumption that bundle pressure drop is so large 

that W is constant arbitrarily close to the vertex. 

Finally, we should have in mind that real heat- 
exchangers may have structural features near the 
vertex which block the flow there. In such a case, the 
flow will begin like the parallel-plate problem 
previously described, with finite velocities, and then 

presumably go over to the similarity solution at large 
distances from the vertex. This interesting problem, 

too, we defer for later study. 
One may analyze downstream separation and final 

mixing loss for the inviscid solution. However, we 

defer this step until after the turbulent-flow problem 
has been treated. 

Asymptotic solution for small E 
If the effect of turbulence is weak (if E is very 

small), we may anticipate a boundary layer along the 
plane of symmetry (0 = 0), wherein v, or a = u/W, 1s 
quite large but not infinite. Outside this thin 
turbulent jet, we expect the inviscid solution to 

apply. If we suppose the turbulent jet to be of 

angular thickness ,,&, so that 

.f = &h@/,,&> 

then substitution into equation (17) gives 

(21) 

h”‘+hh”+b = 0, (22) 

to zero order in E. Now, a solution of the form (21) 
must be matched to an inviscid solution (equation 

(20)) at a place where 0 is of order &, and the 

mviscid solution must be dominated by the In f term, 
because the layer is very thin. Combining equations 
(20) and (21) we see directly that, at such a matching 
point, 

a2 z -2b(flns+lnh). 

Of course, h is of unit order, and we conclude that 
the asymptotic value of a is 

a g [bln(l/s)]“*. (23) 

Therefore, in principle, a is very large if E is very 
small. However, we shall find that a reasonable value 
of E is about 0.006 and then [ln(l/s)]“Z is only 2.26, 
which is hardly a large number! Although one may 
therefore doubt the value of a solution of this 
problem by asymptotic expansion for small E, we will 
find that the exact solution of equations (17-19) for 
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b = 5 and E = 0.006 gives a = 4.92, while the cor- 
responding value obtained from equation (23) is 
5.06, only 3% too high. 

- exact 
--- Lb In(l/~)l”’ 

A more accurate asymptotic procedure would be 
to solve the inner equation (22) exactly, and match 
the solution to the inviscid one at some finite 8, 

requiring the inner solution to give a vanishing value 
of the left side of equation (20) at the matching point. 

This procedure will be correct to order E. However, 
solution of equation (22) must be done numerically 

(it is an inhomogeneous Blasius equation, so to 
speak); thus, one may as well solve the more basic 
equations (17- 19) exactly. The asymptotic formula, 
equation (23), may be kept in mind as giving a 
reasonable estimate of jet velocity. 

Exact solutions 
Equations (17-19) were solved numerically by a 

finite-difference method for various choices of E and 

b. At 6 = 0, symmetry requires f(0) = f”(0) = 0, and 
one chooses a trial value of f’(0) (that is, the jet 
velocity on the axis, a). Then one marches outward 

in Q until f itself passes through 1. At that point, f’ 
should vanish (the normal exit condition); pre- 
sumably it does not, and a new value of a = j’(0) is 
chosen. The process is repeated until f = 1 and f’ 
= 0 are both true at some 0; that 0 is BO, the semi- 
vertex angle which gives the pressure gradient 
specified by b. The following results were obtained 

with a step size of A0 = 0.0001, and are accurate to 
10m6. Further details appear in [9]. 

-. -. 
2 ;. I,14 j 
ODOI 0002 cm04 0.01 0.02 0.04 0.1 

0903 0006 E 003 0.06 

FIG. 6. Maximum velocity on the axis (a = ti,,&W) as a 
function of turbulence level coefficients (E) for various 
pressure gradients or vertex angles. Exact values are 

compared with a simple formula (equation (23)). 

analogous to the transverse pressure variation 
between parallel plates (equation (3)). The change in 
pressure between centerline and wall is rather small, 
of order E. Table 1 displays values of the excess of 

pressure between f3 = 0 and B0 as a coefficient, 
Ap/(ipW2). Although Ap/(ipW’) must be ma- 
thematically of order E, it is typically about 8 times E 

in numerical magnitude. 

Effective viscosity ojturbulence 
Figure 5 shows how the profile of radial velocity is 

modified as R changes, with b held at 5, correspond- 
ing to 0, 2 30’. The profile of azimuthal velocity 

f(0) is also shown. It differs only slightly from the 
inviscid result. As expected, the more turbulent the 

flow, the lower the radial velocity at the centerline. 
With B,, held fixed, the mass flow must also be fixed. 
Hence the areas under the various curves of Fig. 5 
must be equal. Of course 0, changes slightly (Table 
l), but the reduction of flow along the axis due to 
turbulence is nearly compensated for by higher 

velocities at intermediate angles, and, as Fig. 4 
shows, the inviscid relation between b and 8, is 
accurate within 0.4:; for all reasonable values of b 
and c. 

Having found the velocity structure of our flow 
behind a porous V-configuration for various values 
of E, we are in a position to propose a relationship 

between our flows and those previously studied, for 
example by Tennekes and Lumley [S]. 

We note that if c = 0.006 and 0, = 30’, the 
centerline velocity is about 5 times the normal exit 
velocity at the surfaces (W). The average radial 
velocity must be W/O, or 1 .Y 1 W. Thus, a in this case 
is about 2.6 times the average radial velocity 
required by continuity. 

Figure 6 shows a as a function of E. For more open 
vertex angles (smaller b), the effect of turbulence is 
more pronounced. The abscissa is scaled in terms of 

4$1/s) to facilitate comparison with equation (23). 
The asymptotic formula [bln(l/&)]‘!’ represents the 
exact results surprisingly well for all c values of 
interest, and for reasonably small vertex angles. 

Following Chapter 4 of [8], we should choose a 
length scale 1 and a velocity U, to characterize our 
velocity profile. In so doing, we will be comparing 
our flow with either a jet or a mixing layer. In our 

case, it seems more logical to choose the mixing 
layer; its characteristic velocity U, is constant as 
ours should be, whereas the U, for a jet decreases 
like r-“‘. The essential feature of a mixing layer is 
that the action is continually forced from the side. 
This is also true of our flow. A logical difficulty in 
making the connection between our flow and a 
mixing layer is that the latter is at constant pressure, 
whereas we have a radial pressure gradient. How- 
ever, our gradient dies out with distance, and in 
any event, the vorticity arising from velocity shear is 
conserved along these two-dimensional streamlines. 
Therefore, we feel justified in relating our flow to the 
two-dimensional mixing or shear layer. 

For the plane shear layer, it is recommended [8] 
that 

Finally. we note that there is an azimuthal profile This empirical result implies that the transverse scale 
of pressure to be derived from equation (18), of mixing is given by an angle of about 3.3’. 
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Comparing our Fig. 5, we see that our mixing layer 
is indeed of about that angular dimension. In view of 
the definition of “Turbulent Reynolds Number” R,, 
equation (24) asserts that the eddy kinematic 
viscosity is proportional to r, provided U, is 
constant, as we have assumed. In fact, equations (15) 
and (24) together yield the value of a: 

E=;$=0.00334411. 
T W 

It remains to interpret U, for our problem. For the 
shear layer, U, is of course the overall velocity 
difference [8]. Here, we might think to choose US/W 
= a, by analogy. However, we know that much of 
the velocity change in our problem is unrelated to 
turbulence. Following a suggestion of Professor 
Lumley, we note that the significance of U, is 
indirect; it is really the velocity gradient which 
produced the turbulence. Therefore, we define U, as 
that velocity which, across a classical shear layer, 
would cause the same maximum shear as that found 
in our flow. 

The turbulent mixing layer has a velocity profile 
governed by the equation (4.4.8) of [8], and this 
equation is actually the classical Blasius equation; 
the latter, in turn, governs the laminar mixing layer 
for which the solution was calculated by Chapman 
[lo]. The maximum shear may be found from his 
results. In our terms, 

(u&,x = 0.736U,/l, (26) 

where ug is a transverse distance coordinate. 
In our V-bundle flow, using equation (14), we 

write 

Equating these two expressions for (tQmax, and using 
equation (24), we find 

2 = O.O785[f”(8)],,,. 

We can find the maximum value of f” from our 
numerical solutions (or, roughly, by inspection of 
Fig. 5). When b = 5 and E = 0.006, the maximum f”’ 
is 22.84, occurring at 0 = 2.9”. We note that this 
value off? is close to the value of 3.3” associated with 
the assumption of R, = 17.3, thus giving confidence 
in the reasonableness of our approach. In this case, 
UJW from equation (28) is 1.79 which is only about 
l/3 the overall velocity difference (a). 

Finally, then, we substitute equatron (28) into 
equation (25), and obtain our final expression for E: 

E= 1.359 $ [j-“((~&~~ = 2.62.10-“[f”(0)],,,,,,. 
T 

(29) 

This quantity is displayed on Table 1. For b = 5, the 
correct value of E would seem to be 0.006; only for 
that value is the derived i consistent with the E 
assumed at the outset. Of course, the coefficient 

2.62. 1O-4 is tentative. If it were 10 times as large, 
then, for b = 5.0, the “correct” E would be 0.03. 

For more open angles than 30” (b < 5.0), the 
turbulent intensity may be expected to be less 
because shear is less. In fact, one finds smaller values 
of the “correct” E for the more open angles. As Table 
1 indicates, E for B,, = 50” is only half that for 30”. 
Figure 7 shows the “correct” profiles for 30, 40 and 
50”. 

50h 

6 

Radial Velocity, v/W 

FIG. 7. Radial velocity profiles for three vertex angles and 
corresponding pressure coefficients (6), each for the correct 

turbulence coefficient (E) according to equation (29). 

Experiments have recently been performed at 
Oxford University [S] which apparently give cred- 
ence to the velocity profiles described here, although 
the measurements of centerline velocity may perhaps 
imply larger values of E than those found to be 
“correct” in this study. 

Downstream separation 
Just as we did in the simpler case of parallel plates, 

we may now imagine the V array to terminate at r,, 
where separation will then occur. We adopt the 
simple, classical “free-surface” model for separation 
[ 111, wherein a constant-pressure dead-water region 
of finite extent is bounded by a dividing streamline of 
constant velocity (because pressure is constant). Far 
downstream from the comer at r,, we consider that 
the flow becomes a parallel shear flow, necessarily at 
the same pressure as that at separation and in the 

HMT Vol. 22, No. 8-B 
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separated zone. We ignore the actual process, except 
to assume it is inviscid ; we only ask, what is the final 
velocity profile, and what is the width of the 

separated region? This process is indicated on Fig. 3 
as occurring between the stations @ and 0. We 

imagine that a final turbulent decay process then 
follows the flow-straightening phase, with the para- 
llel flow being mixed with the separated “dead 
water”, so that uniform flow is ultimately achieved at 

GJ as illustrated in Fig. 3. 
As in the parallel-plate case, we begin by identify- 

ing the vorticity and stream function at r,; they are 

R = w [.f“‘(O) +f] ; I) = Wr,f. (30) 
rS 

In any given case, from numerical results we can 
tabulate a function F(f‘): 

f” +.f’ = F(f’), (31) 

so that R = (W/r,)F($/Wr,). Now, far downstream, 
where R = uy and u = $, (y being measured per- 
pendicular to the centerline and u being parallel to 

the centerline), the same a($) relationship must hold 
in an inviscid flow. Thus, in dimensional terms 

(defining Y = y/rs and Y = $/Wr,), 

Y,, = F(Y). (32) 

This constitutes a differential equation for ‘I”, subject 
to the boundary conditions that u = W far down- 
stream on the dividing streamline (because we 

hold pressure constant along that streamline), and 
that the stream function continues to vanish on the 
centerline: 

Y’, = 1 when Y = 1; Y = 0 when Y = 0. (33) 

A general solution of equation (32) may be 
obtained by multiplying by Yy, and integrating with 
respect to Y. Then, application of the boundary 
conditions, equations (33), yields 

Y = joy I/-21; F(Y)dY]-l”dY. (34) 

Knowing F(Y), one can find the downstream profile 
function Y(Y) from equation (34). In the inviscid 

case, E = 0, equations (17) and (31) tell us that F(f) 
= -b/f. Equation (34) then gives 

Y = & e112berfc/ A- lnYl’l’, (35) 

whence the inviscid downstream profile and the 
corresponding width of the downstream flow may be 
found: 

k = Y’, = [1-2blnY]“2 (36) 

Y1 = Jn/26e”2herfcJi@. (37) 

When the flow is turbulent upstream of separation, it 
is a simple matter to evaluate equation (34) by 
numerical integration. 

o,8 / r , , 

dividing streamline sin 0, { 
locat ions, Y, 

,25 

0.6 I 

< 0.5 
.zT 

? 
> 

g 0.4. 

‘, 
E 

3 
f 0.3 

9 1 

0.21 ,-b = 1.4, E = 0.0030 

Horlrontoi Veloaty, u/W 

FIG. 8. Velocity profiles at station a, following the inviscid 
straightening process. These profiles should be compared 
with those for radial velocity at 0, shown in Fig. 7, and the 

inviscid profile shown in Fig. 5. 

We should recall that when E is not zero, there is 

an azimuthal pressure gradient of that order. It 
proves impossible to accommodate this effect in the 
sequential flow calculation just described. Thus, 
equation (34) surely embodies an error of order E; 

however, that does not prevent us from including 
features of the jet at station @ such as the maximum 
velocity a, which is of lower order, [ln(l/E)]“2. 

Figure 8 gives the profile of downstream u/W for E 

= 0 and b = s, obtained from equation (36). Also 
shown are the profiles for several wedge angles and 
the corresponding “correct” values of E. Table 1 

shows the streamline contraction in terms of the 
ratio Y,/sin& (see Fig. 3). The contraction is nearly 
independent of E, and is nearly 20% of the rear 
opening of the V, whatever the vertex angle. These 
results may be compared with those presented earlier 
for parallel plates. 

It is not certain that the process @--a may 
properly be considered inviscid, especially if the flow 
up until @ is taken to be turbulent. In effect, we have 
assumed a two-step process in which, at first, 
vorticity has no chance to diffuse in the short interval 
necessary to adjust flow direction by pressure forces 
following separation, and second, turbulent diffusion 
accomplishes final decay of vorticity on a much 
longer time scale. It appears that the present 
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predictions of separated-zone width are rather well 
confirmed by recent experiments by Jones already 
mentioned [5]. 

Pressure effects and losses 
It remains to calculate the pressure losses attribut- 

able to the V configuration. We shall refer to the 
sketch of Fig. 3 which summarizes the steps of the 
process. 

After the shear flow is established at 0, as 
described in the last section, there will be a final 
mixing process, which in fact might not be completed 
in a given cooling tower. However, it would be 
desirable if it should, because a degree of pressure 
recovery would occur. A momentum balance be- 
tween a and @ gives 

s= 2[1-(sin0,)S:’ (i)ZdYl. (38) 

We will refer all pressure differences to the dynamic 
pressure of the fully-mixed flow at infinity, U 
= W/sin BO. According to equation (16), the pressure 
in the V-region is given by 

Po-PS 
~ = 2b(sin2 0,) In (r/r,), 
+pCJ2 

(39) 

and the average of this pressure coefficient over the 
bundle face is 

e= 
$piJ2 

2b sin’ Bo. 

Next, we define a fictitious ideal pressure pi to be 
that which would be needed at the surface if the 
entering flow (W) were turned and accelerated to the 
condition at @ in a smooth, loss-free channel or 
nozzle. From Bernoulli’s equation, pi+fpW2 = pm 
+ipU2, we find 

Pi-Paz p= 
+pu2 

cos2 8,. (41) 

This is the minimum pressure drop associated with 
turning the flow downstream. Owing to losses, the 
actual average pressure drop PO-p, will be larger, 
as we shall see. 

Any pressure difference of interest may be con- 
structed from the foregoing set. Table 1 presents 
coefficients describing pi and pS. In general, the 
integration needed in equation (38) can best be done 
numerically, although when E = 0, an analytical 
solution can be found by use of equations (35) and 
(36): 

Ps-Pm ( > +pu2 r=o 

= (1 -(sinO,)(l +J~ellzberfcJ$l. (42) 

It is customary and convenient to express the 
configurational losses of interest in terms of total 
head. Head loss occurs in two stages, the first of 
which is the turbulent decay of the jet near the 
centerline; this loss is realized before station 0. 

From @ to 0, a flow adjustment occurs with, we 
assume, no loss. The second loss occurs between @ 
and @ where turbulent mixing smooths out the 
velocity profile. 

We define average total head as the total flux of 
mechanical energy p+ ($pu2), divided by the 
volume flow, at each station. Thus, average total 
head will be the velocity-averaged total pressure. 
Along the porous surface @, the average total 
pressure can be obtained simply by adding the 
entering dynamic heat (ip W2) to equation (40): 

PT-P 
0 = (1 +2b)sin2 19~. 
+pu2 

In the ultimate mixed condition, where the velocity is 
again constant (U), the average total head is simply 
given by (jT,-Pm)/ipU2 = 1. Therefore, the 
overall loss of total head from @ to Q is 

h,-P, -----“=(1+2b)sin200-1+Ps, (44) 
;pu2 +pu2 

where the last term is supplied by equation (38) (or 
(42), if E = 0). Table 1 and Fig. 9 show values of this 
overall loss behind the bundles. 

e 
2 s ‘0 ( invIscid 1 \ -_- 
1 o.z- - 6 from equation (291, coefficient 2.62 I 10e4 

% 
----- ti from equation (291, coefficient 2.62 x IO“ 

z 
co 

0’ 
IO M 30 40 50 

\I 

Semi -angle, 80 (degr ) 

FIG. 9. Total-head losses in numbers of leaving dynamic 
heads ; overall from @ to 8, and in the final mixing process @ 
to@.Thelatteristhesameasfrom@ tom becauselossfrom@ 

to Q has been neglected. 

At the intermediate stage 0, the flux of mechani- 
cal energy (unchanged between @ and 0) is 

s 

YS 
rS (pS++pu2)udY. 

0 

Manipulation of this expression yields a formula for 
head loss between @ and Q, again relying on 
equation (38) to evaluate the last term: 

&, - PT m = (sin2 0,) 
y1 u 3 

+pu2 so 0 w 
dY- l+‘+. (45) 

Results are shown in Table 1 and Fig. 9. 
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Figure 9 displays the essential results of our 
analysis of losses. First, we note that use of the 
inviscid solution, equation (42), to evaluate equa- 
tions (44) and (45) gives a good indication of the 

magnitude of the overall loss (about 3/4 of the 
dynamic head leaving the configuration, if B. = 30”) 
and the trend to smaller losses for more open angles. 
If E = 0, the “jet” is inviscid, and all the loss is 

ascribable to the final mixing from s to 0. 
The solid lines show the turbulent calculations for 

the correct values of E based on equation (29). One 
sees that the overall loss is only slightly greater, at 

least for moderate vertex angles, but the final mixing 
loss is less than the inviscid value. The difference, &,, 
-pr,, is the jet-decay loss from ~3 to 13. Clearly, this 

jet loss is predicted to be a small fraction of the 
overall loss. In other words, the final mixing loss is 
the primary mechanism of concern. 

The dashed lines show how results would change if 

our estimate of the Turbulent Reynolds Number 
were badly in error. If the coefficient of equation (29) 

were increased by a factor of 10 (that is, if R, were 
decreased from 17.3 to 8.0), then the overall loss 

would be greater, and the jet loss would be about 
equal to the final mixing loss. 

Before closing this summary of losses, we should 
emphasize that our assumption of infinite pressure 

drop through the bundles themselves, made in order 
that W be constant, masks another loss which is 
practically important, and which must be considered 
in the next phase of our study. That loss will occur 

because the r-dependence of p0 means that W will 
also depend on I’ if pressure-drop is finite, and this 
maldistribution of inflow will be adjusted by mixing, 
just as the profile at ‘~1) becomes uniform at 0, and 
total head will consequently be lost. 

As we have shown, head loss is a measure of 
failure to achieve pi behind the bundles. Conversely, 
pi is the lowest back pressure that can be achieved 

when the low-velocity stream W is accelerated to the 
entrance velocity li. One would like, therefore, to 
have an ideal nozzle with gradual contours all the 
way from the bundle exit (3 to the tower entrance 
condition 0. Clearly. a gradual nozzle is not 

topologically possible given the geometrical con- 
straints of the V-bundle. Equally clearly, the only 
way to make a geometrically compatible nozzle is to 
introduce a cascade of airfoils designed to turn the 
flow abruptly with minimum loss, just as in the first- 
stage stator of an axial-flow turbine. Such a cascade 
is sketched in Fig. 10. The flow immediately 
downstream of the cascade would now be in the 
proper direction, with the proper velocity (U) to 
proceed without further loss into the cooling tower. 
The pressure, ideally, will be pi. In effect, the force 
needed to turn the flow from the bundle would be 
provided by the structure supporting the cascade, 
rather than by a high pressure resulting from the 
collision of opposing air streams. 

For abrupt turning, it is crucial that the cascade 

have a short chord, and hence a close spacing. 
Probably the cascade should be mounted directly on 
the bundle as a sort of last row of the heat 
exchanger. It is also crucial that the cascade provide 

uniform turning, especially near the apex; otherwise. 
the pressure there would be very large. 

A cascade will have a certain flow-turning 

efficiency (as a fraction of the turning angle of the 

airfoils themselves) which depends on solidity 
(chord-to-gap ratio). There is a compromise to be 

made here, because a very high-solidity cascade will 
itself suffer drag losses which would defeat its present 
purpose. Figure 10 shows that even if the turning 

efficiency of the cascade (expressed as the ratio of 

VP / 

c3 / coscode of airfoils for loss-free turning 

3 L 1.0 (perfect cascade1 
2 o,. ___L L_. 1__ ~~ _~l 

20 30 40 50 

Semi-angle, 8, (degr) 

FIG. 10. An airfoil cascade to reduce pressure loss. A 
“perfect” cascade is sketched, and pressure gradient is 
shown as a function of efficiency c,/(Wcot O,), calculated 
for E = 0. For no cascade, efficiency is 0, and pressure 
gradient is as in Fig. 4; for a perfect cascade, efficiency is 

1.0, and radial pressure gradient vanishes. 

radial velocity achieved compared with that nec- 

essary to make the flow parallel to the centerline) is 
rather poor, there will be a substantial reduction of 
radial pressure gradient for a given V-angle. For 
example, if 0,, = 30’ and the cascade turning ef- 
ficiency is only 3O’jo, the pressure gradient is reduced 
by 35x, to nearly the level expected for a wider V of 
semi-angle 50” with no cascade. 

Clearly, even an inefficient cascade should be most 
effective in reducing configurational losses for ob- 
lique heat-exchangers, not only for V-arrangements. 
but for any arrangement which entails turning of the 
flow emerging from the bundle face. Further research 
will be needed to discover the optimum degree of 
refinement for the cascade design. 
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In closing, we should note that the postulated 
cascade will also eliminate at least part of an 
additional loss not considered in this paper, namely 
the mixing loss due to any nonuniformity of W 
caused by nonuniform pressure difference across the 
bundles. 

CONCLUSIONS 

A theoretical study has been made of the flow 
downstream of very high-drag porous plates aligned 
obliquely to the ultimate flow direction. The flow 
emerging from the porous plates was then assumed 
to be of constant velocity, normal to the surfaces, 
everywhere on the surfaces. The porous plates 
represent the downstream surfaces of heat-exchanger 
bundles of the sort used in dry cooling towers. The 
basic purpose of the study has been to analyze 
certain sources of head loss assignable to the oblique 
configuration, and thus to find means to reduce such 
losses. 

First, the well-known flow between parallel porous 
plates was reviewed and extended for the present 
purpose. The arrangement is terminated upstream by 
a solid end-plate, and downstream by abrupt edges. 
The flow was assumed inviscid, and it was shown 
that an extremely high pressure may be expected on 
the end plate, with pressure decreasing toward the 
open end. Also, a stagnant separation region may be 
expected on the end plate itself. For a “square” 
arrangement, the maximum over-pressure is about 
2i leaving dynamic heads, representing an extra draft 
requirement. If the plates are more closely spaced, 
the over-pressure is greater. Downstream of the plate 
ends, separation is represented by a constant- 
pressure free streamline. This dividing streamline 
leads to a parallel flow, still having a parabolic 
velocity profile, but narrowed to about 80% of the 
width of the original stream. 

The more extensive part of this study concerns the 
flow behind a V-bundle, for which the porous plates 
are joined upstream. An inviscid analysis shows a 
self-similar flow with logarithmically infinite pressure 
at the apex, and a concentrated jet along the 
centerline between the plates. The average pressure 
on each plate exceeds the final static pressure by 
about 13 final dynamic heads, for a V-semi-angle of 
30”. 

The concentrated jet is diffused by turbulence near 
the centerline, and it proves possible to accom- 
modate in the analysis the assumption that eddy 
viscosity increases linearly with radius; by reference 
to two-dimensional mixing-layer information, this 
seems a correct approach. Eddy viscosity then 
provides that the maximum centerline velocity is 
about twice the average final leaving velocity (U), for 
a semi-angle of 30”. This smoothing of the centerline 
jet occurs in a narrow zone near the centerline, and 
entails a loss of average total head of about l/5 the 
final dynamic head. The maximum velocity is lower 
for more open angles or greater turbulent intensity. 

Constant-pressure separation is assumed beyond 
the plate ends, leading to parallel flow, with a 

1. 

2. 

3. 

4 

5. 

6. 

I. 

8. 

9. 

10. 

11. 

calculated velocity profile, narrowed to about 80% 
of the V opening. This non-uniform but parallel 
velocity profile may further decay, ultimately to a 
uniform flow far downstream. In this process, a 
further loss of total head occurs, amounting typically 
to 3/S of final dynamic head for a semi-angle of 30”. 

The importance of the high pressure near the V- 
apex has been emphasized, and it has been pointed 
out that the overall total-head loss ascribable to the 
V configuration is equal to the difference between the 
average face pressure and the Bernoulli pressure 
needed only to accelerate the flow from the heat- 
exchanger to the final leaving condition. This 
configurational loss can be eliminated in principle by 
introduction of a uniform cascade of airfoils at the 
exit surface of each bundle, designed to turn the flow 
immediately to the proper ultimate direction. The 
cascade must extend to the apex, and should have a 
high solidity; however, it was shown that even a 
rather inefficient cascade will be very effective in 
reducing total head loss. 

Subsequent studies should concern the losses 
associated with oblique entrance to heat-exchangers, 
and then the effects of losses in causing maldistri- 
bution of flow through the bundles themselves. 
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ECOULEMENT TURBULENT ET PERTES DE CHARGE DANS UN ECHANGEUR 
DE CHALEUR OBLIQUE A FORTE TRAINEE 

Rbumt On ttudie thkoriquement l’&oulement a travers des plaques poreuses a forte trainte align&es 
obliquement suivant la direction ultime de l%coulement, ce qui reprtsente les arrangements d’un 
echangeur de chaleur oblique, par exemple dans les tours de lyophilisation. 

Aprts discussion sur I’&couiement entre plaques paralltles poreuses, on considtre I’tcoulement dans une 
rtgion en diCdre form&e par les plaques poreuses. On admet que la viscositC turbulente augmente 
lintairement avec la distance a I’arite, ce qui permet une solution en similitude. La pression devient 
infinie sur I’arite et un jet concentrk apparait sur la ligne centrale; la turbulence agit prts de la ligne 
centrale pour limiter la vitesse du jet. 

En aval de l’ouverture en C, un retrtcissement de I’icoulement se fait parall&lement a la ligne centrale et 
finalement le profil de vitesse est entitrement diffust par turbulence. Les profils de vitesse, les 
configurations d’tcoulement, les pressions et les pertes de charge totales sont complttement dtcrits dans 
ce cas d’ticoulement. On montre que la perte de charge totale peut 6tre tliminCes en introduisant une 

cascade uniforme de profils juste derriere les plaques. 

TYP6YJlEHTHOE TE’4EHME M nOTEPM AABJIEHMII HA BblXOflE M3 HAKnOHHO 
PACnO_JlO?KEHHbIX TEllJl006MEHHbIX YCTPOtiCTB C 6OJlbIUMM 

K03@@MuMEHTOM COnPOTMBnEHM5l 

AHHoTaunfl npOBeneH0 reoperHrecKoe Wcc:lenoaaHiie TeqetiHR ?a nopI(cTblMI1 n:IacTUHaMu c okletu, 
BLICOKHM KO3++HUHeHIOLI COIIpOIHB.leHWR, IlOMelUeHHblMW IlOU yT!lOM K HWlpaBJleHHlO IIOTOKB. 

T:IK;IFI KOH(,lHryp~lUHfl IIB.l!WTCR IrtllA’lHOii ;1.111 Icll:1006MCHHHKOB. HCIlOJlb3ycMblX. HaIlpHMep. B CyXrtX 

rpdL,HpHSlX. 

B~ara.l~e Kp;, I KO p;lCCMO IpCH c.lyL%lti TcWHIIII EHfiKOCT” MeWly I,~l~d:I:lc:lbHblMM IlOpHCrblW, 

II:l~lc~HHLiMH, I,OC:lc ‘leI.0 LldH ilHil.lW lc’lcHt(R B V-06pll3HOii 06:laCTH. 06pd30BaHHOfi IlOpHCTblMS 

Imcl MHblMM. nOKWH0. VI0 BllXpeHmI BR’IKOCT b BOlpaCTaeT NiHefiHO C yBemWHfleM pdCCTOxHMn 

07 yI.lLl lScplllHHbl. 410 C.Wljcl 1(‘S ;IBIOMORc:lbHOl-0 pellleHWl. Be.l&iqHHa LLiB:leHWl B6JIH3W BepUlHHbI 

CldHOBHTcR 6eCKOHCLlHOti. d HB rcO\1elpWleCKOti OCH KOH,,lHrypdUHH IlOIIB;lReTCII CKOHUeHTpHpOBaHHLiR 

c-rpyn. B:IWIHH~ Iyp6y:leHrHOClw B6.IH3H reoMerpHWCKOti OCH CBOLIHTCR K OrpaHHWHWO CKOpOCTH 

c’lpy~ H ,310ti ot-,.iacrw. 3a UXO~~OM H I/-oGpa-5tiyto 06:iacrb r~po~cxoa~~ cyxeHHe IIOTOK~~; TeqeHMe 

CILIHOBHTCR Ilil~~i.l:lelll,Hbl~I IcOctc~pWlcCKO~ OCH. H. H K~HC~IHOM c1rore. npo$s_-rb cropocr~ no.i- 

HOC, b10 p~,‘lMblBWlCH ryp6y.lcHlHOCTbW. &la ,‘lOil IlOCll’Z~OBilTe!lbHOCTH IlpOUcCCOIl re’,eHHn n;tHO 

IIO;IpO;)HOc OllHCdHHc IIpO,,IM.IC~ CKOpOcW. .lHHHfi TOKa. I13MCHCHIIR _&iB,leHHR II CyMMapHblX ,lOl-cpb 

HWOpd nOKL13aH0. LI IO CyW~lpHblc IlOTepH HWOpa MOryT 6blTb HCK;lWWHbl ‘13 W&I yCTaHOBK# 

HcnocpencraeriHo xi Il.lacrmia\iH peru?TKti ~IBHOMC~HO pacnpene.lettHbix npo$ni:iefi. 

TURBULENTE STROMUNG UND DRUCKVERLUSTE HINTER SCHR;iG 
ANGEORDNETEN WARMEUBERTRAGERN MIT HOHEM STROMUNGSWIDERSTAND 

Zusammenfassung-Die Striimung hinter einer porbsen Platte mit hohem Strdmungswiderstand, die 
schrig zur endgiiltigen Striimungsrichtung ausgerichtet ist, wird in einer theoretischen Studie untersucht. 
Der Aufbau entspricht zum Beispiel gewahnlichen, schrig angestramten Wirmeiibertrageranordnungen 
in Trockenkuhltdrmen. 

Im AnschlulJ an eine knappe Betrachtung der Striimung zwischen parallelen, poriisen Platten wird die 
Strdmung in einer V-f6rmigen Zone, die durch porBse Platten gebildet wird, untersucht. Es wird 
angenommen, dal3 die scheinbare ZBhigkeit mit der Entfernung vom Scheitelpunkt linear zunimmt. 
woraus sich die Miiglichkeit der ;ihnlichkeitsl&ung ergibt. Im Scheitelpunkt wird der Druck unendlich 
hoch, und in der Mittelachse bildet sich ein scharfer Strahl, wobei die Strahlgeschwindigkeit inin der 
Nahe der Mittelachse durch die Turbulenz begrenzt wird. Hinter der Offnung der V-fiirmigen 
Anordnung, wo die Strbmung parallel zur Mittelachse verlauft, tritt eine Einschniirung ein, und schliell 
lich wird das Geschwindigkeitsprofil durch die Turbulenz vollsttindig ausgeglichen. Die Geschwindigkei- 
tsprofile, Stromlinienformen, Drdcke und Austrittsverluse werden fiir diese Folge von Strlimungsvor- 
gangen vollsttindig beschrieben. 

Es wird gezeigt, da0 die Austrittsverluste durch den Einsatz von Schaufelgittern gleich hinter den 
Platten beseitigt werden kbnnen. 


